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RELATION BETWEEN BELTRAMI AND HOLOMORPHIC DISC EQUATIONS

Giorgadze G., Jikia V.

Abstract. In this paper we give detailed analysis pseudo-analytic functions theory point of

view Beltrami and holomorphic disc equations and prove the equivalence this equations.
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The objects of study of this paper are particular cases of the general elliptic system:
Beltrami [1], [2] and holomorphic disc equations [3]. The paper is continuation of the
work of first author [4], detailed definition we don’t give here and sometime directly
give refer to [4].

Let (F,G) normalized generating pair on complex space C [5] it means that
1) F,G ∈ C p−2

p
C, p > 2; 2)Fz, Gz ∈ Lp,2(C)

∩
Cβ(Cloc), 0 < β < 1; 3)Im(F (z)G(x)) ≥

K0 > 0, K0 = const, z ∈ C. Every function W, at every points, unique represented by
F (z), G(z) in following form

W (z) = φ(z)F (z) + ψ(z)G(z),

where φ, ψ real functions.
Let W (z) is (F,G)-pseodoanalytic in C, then it is know that W (z) is solution of

Carlemann-Vekua equation
Wz = AW +BW,

where

A =
FzG− FGz

FG− FG
,B =

GzF − FzG
FG− FG

.

From the pseodo-analytic follows also, that there exist continuations partial derivalives
φz, φz, ψz, ψz and

Fφz +Gψz = 0.

Consider the function
ω(z) = φ(z) + iψ(z).

Then

2(Fφz +Gψz) = (F − iG)(φz + iψz) + (F + iG)(φz − iψz) =

= (F − iG)(φ+ iψ)z + (F + iG)(φ− iψ)z = (F − iG)ωz + (F + iG)ωz = 0.

From this follows, that

ωz(F − iG) + ωz(F + iG) = 0. (1)
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Lemma 1. F (z)− iG(z) ̸= 0 Indeed,

|F (z)− iG(z)|2 = (F (z)− iG(z)(F (z)− iG(z)) = (F (z)− iG(z)(F (z) + iG(z)) =

= |F (z)|2 + |G(z)|2 − i(F (z)G(z)− F (z)G(z)) =

= |F (z)|2 + |G(z)|2 + 2Im(F (z)G(z)) ≥ 2K0 > 0,

when |F (z)|2 > 0, |G(z)|2 > 0, Im(F (z)G(z)) ≥ K0 for every z ∈ C. Lemma proved.
From Lemma 1 and (1) follows, that

⇒ ωz + ωz
F + iG

F − iG
= 0.

Denote by q(z) = −F (z)+iG(z)
F (z)−iG(z)

.

Lemma 2. |q(z)| ≤ q0 < 1, z ∈ C
Step 1.

|q(z)|2 = |F (z) + iG(z)|2

|F (z)− iG(z)|2
=

(F (z) + iG(z))(F (z) + iG(z))

(F (z)− iG(z))(F (z)− iG(z))
⇒

⇒ |F (z)|
2 + |G(z)|2 − 2Im(F (z)G(z))

|F (z)|2 + |G(z)|2 + 2Im(F (z)G(z))
< 1, (2)

when Im(F (z)G(z)) ≥ K0 > 0, z ∈ C.
Step 2. The function F, G satisfies Carlemnn-Vekua equation

Fz = aF + bF ,Gz = aG+ bG, (3)

when F ∈ C p−1
p
(C), a, b ∈ Lp,2(C) we obtain aF + bF ∈ Lp,2(C). From (3) follows, that

F (z) = Φ(z) + TC(aF + bF )(z), (4)

where Φ(z) entire function. From F (z), TC(aF+bF )(z) ∈ C p−2
p
(C), follows that Φ(z) ∈

C p−2
p
(C). By Liuvile theorem we obtain Φ(z) = const, therefore Φ(z) = C, z ∈ C. From

this and (4) obtain
F (z) = C + TC(aF + bF )(z). (5)

When TC(aF+bF )(∞) = 0, from (5) follows, that F (∞) = C. In similar way we obtain
G(∞) = C1.

When Im(F (z)G(z)) ≥ K0, therefore

Im(F (∞)G(∞)) ≥ K0. (6)

From (2) and (6) ⇒

⇒ |q(∞)|2 = |F (∞)|2 + |G(∞)|2 − 2Im(F (∞)G(∞))

|F (∞)|2 + |G(∞)|2 + 2Im(F (∞)G(∞))
< 1. (7)



Relation Between Beltrami and Holomorphic ... 59

From (2) and (7) follows, that

|q(z)| < 1, z ∈ C, |q(∞)| < 1,

therefore |q(z) ≤ q0 < 1, z ∈ C.
Proposition 1. The exist the function q̃(z), such that ω is the solution of Beltrami

equation with coefficient q̃(z).
Introduced the function q̃(z) :

q̃(z) =

 q(z)
∂zω

∂zω
,when ∂zω ̸= 0,

0,when ∂zω = 0.

(8)

and consider the equation

∂zω − q(z)
∂zω

∂zω
= 0.

From (8) follows that ω satisfies the equation

∂zω − q̃(z)∂zω = 0. (9)

It is clear, that

|q̃(z)| = |q(z)∂zω
∂zω
| = |q(z)||∂zω

∂zω
| = |q(z)| ≤ q0 < 1. (10)

From (9) and (10) follows, that ω(z) is solution of the Beltrami equation

∂zh− q̃(z)∂zh = 0. (11)

In area U ⊂ C the function ω represented as ω(z) = Ψ(W (z)), where W (z) is complete
homeomorphism of the equation (11) and Ψ(ζ) analytic on W (U) function.
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